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Abstract. A reliable computational procedure for solving a system of algebraic equations 
of the general form F ( x )  = 0 is presented. Global convergence is achieved through the 
requirement that the norm IIFl( decreases at each iteration as far as is feasible. A discussion 
of convergence and illustrative examples are given for two variable systems and these 
considerations are extended to systems of n equations in n variables with particular reference 
to three variable systems. 

1. Introduction 

The numerical solution of a set of nonlinear simultaneous algebraic equations is of 
importance in a large variety of physical problems. For example in recent years, an 
explicit expression for the pair correlation function of a hard-sphere fluid has been 
obtained (in the Percus-Yevick approximation) which involves all poles ( ko+ ik,) of 
the structure factor S ( z )  in the complex z plane, ko and k ,  being determined numerically 
by solving two simultaneous equations (Kok 1980). The calculation of phase diagrams 
and bulk densities of the components in two co-existing liquid-vapour phases (Telo 
da Gama and Evans 1984) also involves the numerical solution of a set of nonlinear 
equations. Iterative methods for solving simultaneous nonlinear equations have also 
been used in band structure calculations in which the density-functional total energy 
is minimised (Bendt and Zunger 1982, Srivastava 1984). In addition, some physical 
problems may be formulated in terms of integral equations (Lonseth 1977, Guy et a1 
1984); it is known that one method of solving integral equations numerically is by 
reduction of an integral equation to a set of simultaneous algebraic equations (see e.g. 
Keller 1968). 

In some cases, one has a fair idea of the approximate solutions when solving a set 
of equations. However in others, it is not often possible even to venture a crude guess 
as to where the solutions might be. In the latter situation, different methods have been 
relied on to provide an initial approximation which, once available, may be used as 
input to generate a solution to the required accuracy using methods which are usually 
fast but do require a good initial approximation. Generally, some of the problem areas 
encountered with the standard methods are as follows. 

(a) If the starting point is distant from a root, the iterates might diverge away from 
the root for iterative methods which are not globally convergent. This problem is 
inherent in methods like that of Newton-Raphson which is not globally convergent 
except when solving for real functions (of one variable) whose first derivatives are 
monotonic. A recent development has been to devise safe starting regions (Moore and 
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Jones 1977) from which successive iterates in the Newton-Raphson scheme converge 
to a root. 

(b) With some methods based on minimisation, there is a possibility that the 
methods may fail when the iteration converges to a non-zero local minimum of the 
norm of the function. 

In this paper, we report a practical procedure for finding roots of a set of algebraic 
equations of the general form 

F ( x )  = 0. (1.1) 

The method is globally convergent irrespective of starting point and provides an 
automatic search for a real root. For a small number of equations, it is likely to be 
fast and efficient. 

2. The computational procedure 

We begin by illustrating the procedure for a system of two equations in two variables 

and propose an iteration scheme of the form 

(2. la)  

(2.lb) 

where the first derivatives of F, and F2 are assumed to exist. There are three other 
possible iteration schemes similar to this one: one in which the variables x1 and x, are 
interchanged and another two schemes obtained from the first two by interchanging 
the functions F, and F,. It will be shown later that at least two of the four iteration 
schemes exemplified by (2.1) are convergent with the same convergence factor. The 
other two schemes, if convergent, also have a common convergence factor. The task 
is hence to find one of these convergent schemes, preferably the one with the smallest 
convergence factor. In the linear region in the neighbourhood of a root, the norm llFll 
evaluated at successive iterates should decrease if the iteration converges to a root. 
Our procedure for choosing the scheme is thus based on this trend of decreasing norm, 
i.e. we select the scheme corresponding to the smallest of the four norms 11 FII evaluated 
with the iterates generated from all the four schemes with a given starting vector. It 
is shown in 9 3, that in the linear region, the scheme with the smallest convergence 
factor yields the smallest norm ( ( F ( ( .  If the starting vector is in a nonlinear region, the 
scheme chosen according to this criterion may not be convergent near the root although 
the resulting set of iterates is closer to the solution. Therefore, it is necessary to check 
that the norm IlFll decreases at successive iteration points. If this is the case, then the 
same scheme is adopted for subsequent iterations. However, should IIF([ be found to 
increase at any stage, the search for a scheme that gives the smallest norm of F is 
repeated using the iterates of the previous stage as the starting vector. The algorithm 
for the iterative process is as follows. 

Step 1. With a selected starting vector, evaluate the next set of iterates using each of 
the four schemes. 

Step 2. For each set of iterates obtained in step 1, calculate the norm l(FI( and identify 
the scheme that gives the smallest ) I  Fll. 
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Step 3. With the scheme identified in step 2, generate next set of iterates. 

Step 4. Calculate the norm 1) F)J with the iterates obtained in step 3 and compare with 
that calculated with the previous iterates. If the former is smaller than the latter, then 
go to step 5 else take the previous iterates as starting vector and go to step 1. 

Step 5. Apply stopping criterion; if not satisfied go to step 3. 

This algorithm has been tested and found to work well in most cases. However, 
for certain systems of equations, it is possible that at some stages of iteration all the 
four norms obtained in step 2 exceed the norm evaluated with the previous iterates. 
When this occurs the convergence can be slow or the algorithm may even fail. Such 
a situation arises in two ways. 

(a) If there exists a region where the separation between the two functions becomes 
very small but there is no real intersection, the iteration will proceed towards this 
region. At the stage when the iteration point is in the region of minimum separation, 
the above mentioned situation will occur. If the iterative process continues, subsequent 
iteration points will oscillate about this narrow region. 

This, however, does not pose a real problem and can be overcome by a slight 
modification of the algorithm. When the situation of increasing norm is encountered 
for all the four schemes, the scheme that gives the smallest norm at the next iteration 
point is selected as prescribed in the above algorithm. But in the subsequent iterations, 
the choice of scheme is restricted to only two out of the four if the successive norms 
are still increasing. These two schemes comprise the one currently in use and the one 
having the same convergence factor. This restriction is lifted when the norm starts to 
decrease. Hence, the modification only involves some minor changes in the algorithm. 
Limiting the choice of these two schemes has the effect of constraining the iteration 
to proceed away from the neighbourhood of minimum separation. 

(b) If at any stage, all the first partial derivatives of Fl and F2 are small compared 
with the functions themselves, the iteration equations (i.e. equations (2.1) and similar 
ones associated with the other schemes) will generate a point which is much further 
away from the root than the current point. This is usually manifested by an enormous 
increase of the norm IIFII. However, because of the global convergence property of 
the present procedure, the iteration will eventually converge back to the root, although 
this may mean many more iteration steps. To reduce the number of iterations, one 
may continue the iteration with a point nearby which does not give too small a 
derivative. This point can be arbitrarily chosen. A choice that is likely to lead to fewer 
iteration steps for convergence to a root is the inversion of the previous point with 
respect to the current point. This would certainly be a logical choice if the previous 
successive iteration points are proceeding towards a root. 

3. Discussion on convergence 

The convergence factor a is defined as 

where e; is the error in the ith iterate xj, and the root r = ( rl, rz). 
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For the iteration scheme (2.1) hereafter referred to as the scheme xIFlx2F2,  it can 

a ,=f (m, /m,+1)  ( 3 . 1 ~ )  

where m ,  and m2 are the gradients of the curves F, = 0, F2 = 0 at the root respectively. 
The convergence factors corresponding to the other three alternative schemes x2F2x1Fl 
(in which the variable x2 is iterated first using the iteration function F2), x2F,xlF2 and 
x, F2x2F1 are respectively 

a2=8m2/m,+1) ,  % = ; ( m , / m 2 +  11, a4=t (m, /m2+1) .  (3.lb, c, d )  

It is readily seen from these expressions for the a’s that there are only two distinct 
convergence factors, the smaller of which is less than one except in the special case 
where m, = m2. 

To achieve convergence, one needs to choose one of two schemes that have a 
convergence factor less than one when the iteration has reached the linear region near 
a root. We now show that starting from a given point specified say by the ith iterates 
in such a region, the scheme that yields the smallest norm evaluated at the ( i  + 1)th 
iterates is that associated with the smaller convergence factor. This fact is used in our 
proposed algorithm (step 2) to search for a suitable scheme. To prove this, we give 
below expressions for the square of the norm, N = F: + F:, evaluated with the ( i  + 1)th 
iterates in the linear region near a root for each of the four iteration schemes mentioned 
earlier in the section (taken in the same order): 

be shown that the convergence factor is 

N, =:(a:+ b:)[(l - m 2 / m , ) x ~ I 2  

N2 =$(a:+ b:)[(l- m , / m , ) ~ ~ ] ~  

N 3 = $ ( a : +  b:)[(l - m , / m 2 ) x ~ 1 2  

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

N4 = a( a:+ b:)[(l- m , / m , ) ~ : ] ~  (3.2d) 

where 

aj = Fl j ( r1 ,  ~ 2 1 ,  

N4/ N ,  = N,/ N2 = m:/ m:. 

bj = F2,j(r1, ~ 2 ) .  

From these expressions for the N’s, one obtains 

(3.3) 

If, for example, m : / m : <  1, then the first two schemes have the smaller convergence 
factor according to equations (3.1). In this case, N4> NI and N 3 >  N2 ,  and hence the 
iteration scheme associated with the smallest norm has a convergence factor less than 
unity. Convergence to a root is thus guaranteed once in the linear region near a root. 

4. Systems of n equations in n variables 

The iterative procedure described in the preceding sections can be extended to a system 
of n nonlinear equations in n variables of the general form: 

F ( x )  = 0 ( 4 . 1 ~ )  

or 

F , ( x , ,  x2,. . . , x,) = 0, j = 1,2, . . . , n (4.lb) 
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where F is an n-component vector-valued function. The set of iteration equations we 
propose, analogous to (2.1), is as follows. 

For the first iterate, 

xyl = x;y  ( 4 . 2 ~ )  

and for the other n - 1 iterates, 
x!+1 = t ( x j + x j ; ) . l )  

where 

(4.2b) 

with 
i + l  F;, = F,(x:t ' ,  x 2 ,  , . . . , x ~ ~ ~ ~ ~ , ,  x j ,  . . . , x k ) .  

It can be shown that near a root the relation between the error vectors, e = x - r, of 
successive iterations is 

= Me' (4.3) 

where M =;[ I  - ( L +  D)-' U] and 0, L, U are the respective diagonal matrix, lower 
and upper triangular matrices with zeros in each position of the leading diagonals 
such that 

D+ L+ U = F ' ( r ) .  

Explicitly, for the j th  component of the error vector e, 

where B f = ( B I - l A , - I - F  ,,,- l)(l-tj,,f+,), B,=O, and A , - I = - F , - I + l , , - l ,  all derivatives 
being evaluated at the root. 

The linear convergence factor CY satisfies the secular equation 

det( S - al) = 0 (4.5) 

where S = ( M , k ) : k = 2  is the ( n  - 1) x ( n  - 1) matrix formed from the coefficients of 
e;, e;, . . . , e: on the RHS of (4.4). In general CY may be complex. The necessary 
condition for convergence is I C Y I  < 1 .  This condition will be guaranteed if the spectral 
radius p ( S )  < 1, i.e. all the roots of the secular equation (4.5) lie within the unit hyper- 
circle with centre at the origin. 

For a system of two equations in two variables, there are four different iteration 
schemes, i.e., the schemes x l F l x 2 F 2 ,  x 2 F 2 x l F l ,  x2Flx1F2 and xlF2x2Fl  described in § 2. 

For n = 3, there are 36 different iteration schemes. It can easily be proved that the 
number of convergence factors is only 12, each associated with three schemes. For 
example, the scheme xlFlx3F2x2F3 and the other two schemes x3F2x2F3xlFl  and 
x2F3x1F1x3F2,  which are obtained through a cyclic permutation of the x F  groups, have 
the same convergence factor. 

Of these twelve generally distinct convergence factors, it is of interest to examine 
how many of them have absolute values less than one. An analytical approach for 
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doing this could be quite involved. We adopt a simple way that makes use of the 
Monte Carlo technique. 

The secular equation (4.5) reduces, for n = 3, to a quadratic equation whose larger 
root is given by 

where p ,  q, r and s are functions of the various first partial derivatives of FJ at the 
root. For the scheme xIFlx2F2x3F3,  

and a, = aFl/axj,  bj = aF2/axj, cj = aF3/axj, j = 1,2,3, all evaluated at the root. As 
mentioned earlier, if the absolute value of ar deduced from (4.6) is less than one, the 
corresponding scheme is convergent. Our approach involves the generation of nine 
random values of the a’s, b’s and c’s and the calculation of lar( for all the 12 schemes. 
The frequency distribution of the occcurrence of a’s having absolute values less than 
one is shown in table 1. It is obtained from 10000 sets of randomly generated a’s, 
b’s and c’s, which are restricted to lie between -1000 and +1000. 

Table 1. 

No of convergent 
schemes 0 1 2  3 4 5 6 7 8 9 10 11 12 

Frequency 0 0 1782 1548 3334 1808 1168 163 158 39 0 0 0 

The table shows that for every set of a’s, b’s and c’s, at least two and as many as 
nine schemes are convergent. Although this does not amount to a conclusive proof, 
it is highly plausible that convergence in the linear region is assured for a system of 
three equations involving functions of three variables when a solution exists. 

If the iteration proceeds with a fixed sequence of x,, x2 and x3, then there are 
altogether only 3 ! = 6 possible schemes, e.g. x,FlxzFzx3F3, x1FIx2F3x3F2,  x,Fzx2F,x3F3, 
x,F2x2F3x3Fl,  x,F3x2F1x3FZ, x lF3x2Fzx3Fl .  It can be shown similarly that there is at 
least one convergent scheme among the six. 

This same technique may be used to study the convergence of higher order systems 
of equations. 

5. Illustrative examples 

In this section, we illustrate the use of the present procedure in solving some systems 
of two nonlinear equations in two variables and subsequently we apply it to a system 
involving three variables. The examples are chosen to demonstrate the problems 
encountered in some of the test runs which have led to the modifications described in 
the last part of 0 2. 
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Example 1 .  Solve 
F ~ ( x , ,  ~ 2 )  = X: + x i  - 1 = 0 

Fz(x1, ~ 2 )  = x: -x~ = 0. 
The Euclidean norm is used throughout this example. Table 2 shows the successive 
iterates with (200, -100) as starting point. The stopping criterion used is 

The superscript ‘a’ denotes where step 1 in the algorithm described in 9 2 is required 
and the iterates are obtained from the chosen scheme; ‘b’ indicates where the second 
problem mentioned in 9 2 occurs and the iteration point is replaced by the inversion 
of the 8th point about the 9th. If the iteration is allowed to continue at step 10 without 
such a change, then 23 iteration steps would be required for convergence to the root 
with the same accuracy. It can be seen from the table that convergence is fast outside 
the linear region. Because the linear convergence factor is close to one in this particular 
case, a large proportion of the computing time is actually spent in refining the 
approximate solution in the vicinity of the root. 

Table 2. 

Iteration (xl, x2) Iteration (xl, x2) 

1 99.750 000, -50.127 344’ 
2 49.623 735, -25.319 200 
3 24.556 756, -13.044955 
4 12.012 770, -7.037 316 
5 5.713 475, -4.153 844 
6 2.493 225, -2.801 447 
7 0.684 800, -2.148 476 
8 -1.226 288, -1.552 736 
9 0.019 960, -1.325 494 

10 1.266 208, -1.098 252b 

11 
12 
13 
14 
15 
16 
17 
18 
19 

0.551 697, 
1.039 345, 
0.944 592, 
0.800 147, 
0.778 048, 
0.787 033, 
0.786 023, 
0.786 166, 
0.786 150, 

-0.396 941‘ 
0.341 649 
0.616 952 
0.628 593 
0.616 976 
0.618 199 
0.618 015 
0.618 036 
0.618 034 

Example 2. Consider solving 

F , ( x l ,  x2) = x1 sin x, - x2 = 0 

F ~ ( X , ,  XI) I/x, + 2x, - ~2 - 5 = 0 

as an example of the problem (a) described in D 2. With (20, 10) as starting point and 
the same stopping criterion as in example 1, the iteration converges to (2.7954,0.9485) 
in 11 steps (see table 3). 

The superscript ‘a’ is as in example 1 and ‘b’ denotes iterates obtained from a 
scheme chosen from the two having the same convergence factor. 

Example 3. Solve 
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Table 3. 

Iteration (x,. x2) Iteration (x,,  x2) 

1 7.459 324, 8.442 957' 7 2.731 629, 0.952 051 
2 7.870 026, 9.655 036" 8 2.797 391, 0.948 009 
3 7.259 054, 7.833 452a 9 2.795 121, 0.948 589 
4 6.339 118, 4.093 914b 10 2.795 431, 0.948 525 
5 4.444 508, -0.096 03gb 11 2.795 397, 0.948 532 
6 2.284817, 0.815 339b 

This system of equations is solved using a set of twelve iteration schemes having distinct 
convergence factors. With (1,2,3) as starting point, the iteration converges to the 
solution (0, 0,O) in 13 steps when 

p1 (xj-xj-1)2 ) 1'2 < 0.0001. 

A rudimentary version of the procedure given here has been used (Kok 1980, Kok 
and Tang 1982) as the basis for the numerical solution of a set of two equations in 
which the functions are expressed in integral form and are evaluated using a separate 
subroutine. 

In the examples given above and many others that have been tested, global 
convergence is a universal feature. 

6. Final remarks 

The iteration scheme (2.1) is similar to the one used in successive overrelaxation 
(Lieberstein 1968, Ortega and Rheinboldt 1970) for which the equations of iteration 
are as follows: 

x;+I = x; -oF,(x;, X;)/Fl,l(x;, x;) 

x;+1 = xi -  0F2(X1+l, x;)/F2.2(x;+1, xi). 

The present procedure, however, has two important features to cater for convergence 
on a global scale: (i) that of restricting the successive iterates to a trend of decreasing 
norm llFll and (ii) provision of alternative schemes to facilitate convergence. 

Although the iteration equations adopted in the procedure are of Newton-Raphson 
form, they may be replaced by equations of other standard techniques such as the 
secant or bisection method. 
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